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We develop a renormalization group method for analyzing the generating func- 
tional for charge correlations of a dilute classical dipole gas. It is based on and 
extends the renormalization group analysis introduced by Brydges and Yau for 
the dipole gas partition function. Our method leads to systematic formulas for 
the large-distance behavior of correlation functions of all orders. We prove that 
in any dimension d~> 2, at any value /~ > 0 of the inverse temperature, and at 
sufficiently small activity z, the correlation functions exhibit at large distances 
the same behavior as for a vacuum (z = 0), but with a new dielectric constant 
1 + a over which we have good control. The results proved here extend existing 
results on the two-point correlations to all higher correlations, and constitute a 
general confirmation of the fact that dipoles do not screen. 

KEY WORDS: Dipole gas; renormalization group; correlation functions; 
large-distance asymptotics. 

1. I N T R O D U C T I O N  

T h e  p o t e n t i a l  b e t w e e n  t w o  u n i t  d i p o l e s  p,  p '  ~ S d -  1 l o c a t e d  a t  x, y ~ R d h a s  

t he  f o r m  

( p . ~ ) ( p '  . ~ ) ( - A )  -1 ( x - y )  (1)  

w h e r e  t h e  k e r n e l  of  t he  i n v e r s e  L a p l a c i a n  ( - 3 )  1 is t h e  C o u l o m b  p o t e n -  

t ial .  T h e  c lass ica l  s t a t i s t i c a l  m e c h a n i c s  of  a gas  o f  s u c h  d i p o l e s  w i t h  
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temperature /~-1 and fugacity z is given by the grand canonical partition 
function 

rt>~O ( Sd l •  " 

x e x p ( - ( f l / 2 )  ~ ( p i . O ) ( p j . O ) ( - A ) - l  ( x i - x j ! )  (2) 
i , j  

The model can equivalently be expressed as a Euclidean sine-Gordon 
quantum field theory by 

= f e -  v(r d#~(O) (3) Z 
O 

Here ~b is a scalar function on R d, d#~ is a Gaussian measure with 
covariance v =/3( - A ) - 1, and 

v(O) = 2z fS~-~• @ dx COS[p" 0~b(x)] (4) 

This model has both short-distance and large-distance difficulties. The 
short-distance problem is not physically important and is removed by 
introducing a short-distance cutoff on the Coulomb potential. Our concern 
is to control the large-distance behavior of the theory. We shall analyze the 
model in finite, arbitrarily large volumes, and prove bounds which are 
uniform in the volume. 

We study the generating functional for charge correlations 

Z(p)  = (ei(P'O)> = Z 1 y ei(p,~)e-V(O) dlt~((9) (5) 

where (p, ~b) = f p(x)  (J(x) dx. Then Z(p)  determines the partition function 
for a gas with an a priori charge distribution p(x). Correlations between a 
charge +q  at x and - q  at x' are described by the charge correlation 
functions 

g(x, y) = Z(qbx - qby) (6) 

g'(x, y) = Z(q6x - q6y) - Z(q6x) Z ( - q f y )  

We also consider the field correlation functions 

G(xl ..... Xp) = ( O ( x l ) ' "  O(Xp) ) = iP[6/6p(xl) ... 6/6p(Xp) Z(p)]  ]p=o (7) 

as well as the truncated functions defined by 

Gt(x l , . . . , xp)=iP{f /~P(Xl) ' " f / r~P(Xp)[ logZ(P)]}] ,  o (8) 
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The present paper does not deal with dipole correlation functions 
(expectations of 8~b). However, with little extra effort, the method can be 
extended to treat the generating functional for such correlations. 

A detailed analysis of the dipole gas model and (8~b) 4 model was given 
by Gawedzki and Kupiainen (5,6) (see also the similar work of Magnen and 
Seneor(7)). They implement the ultraviolet cutoff by working on a lattice 
and show that under iteration of the renormalization group (block-spin) 
transformation, the effective interactions tend to zero, leaving a free field 
Gaussian piece #~. with v* ~v. Furthermore, the pressure and dielectric 
constant are shown to be analytic in the fugacity z. They then extend the 
result to show that the long-distance behavior of correlation functions (in 
particular G 2 and G]) is the same as that of the fixed point #v*- 

More recently, Brydges and Yau (1) introduced new renormalization 
group techniques for the continuum dipole model described above. They 
reproduced the first result of Gawedzki and Kupiainen, the convergence of 
the effective interactions to zero and the analyticity of the pressure. Their 
method is conceptually simpler and has great potential for generalization 
to other models. In fact, we have extended this method to analyze the d = 2 
Coulomb gas in the Kosterlitz-Thouless phase (2) and quantum electro- 
dynamics itself. (3) 

In outline, the method goes as follows. Beginning with the model on 
a d-dimensional torus A(N) of linear size L N, L >~ 2, the measure e-Vd# on 
A(N) is replaced by a sequence of measures e VJd#j on smaller tori 
A(N-j )  for 0 ~< j ~< N. The sequence is generated by integrating out short- 
distance modes and rescaling. The change in the partition function in 
passing from j to j +  1 is given by a multiplicative factor Zj depending 
on Vj, and one has the representation 

,9, 

expressing Z as a product of contributions from different length scales. If 
z is small enough (i.e., the gas is dilute), it is proved that the effective 
potentials Vj tend to zero a s j ~  oc. Furthermore, log Zff[A[ tends to zero 
exponentially fast, uniformly in N, and this controls the pressure log Z/IA]. 

A key feature of the Brydges-Yau approach is that the Gibbs factors 
e-vJ at each stage are expressed as polymer expansions 

e-  w(o)= ~2 1-[ KJ(X~, O) (10) 
{x8 i 

where a polymer X is a union of unit hypercubes ("blocks") in A N. All 
results follow from estimates showing KJ(X, ~b)--+0 as j--+ 0% while 
maintaining control over growth in ~b and decay in the size of X. 
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The goal of the present paper is to extend the work of Brydges and 
Yau to a complete analysis of large-distance asymptotics of correlations in 
the dipole gas. We prove formulas similar to (9) for the quantity Z(p): 

V 7[-[ ei(OJ,~)e- vJ(o,p) du . ( ~ 7  

where now e vJ(~,p) is expressed as a polymer expansion involving activities 
KJ(p) = KJ(X, ~, p). The important issue is to control the dependence on p 
in addition to the X, ~ dependence. Our main result (Theorem 1) says that 
KJ(p) is analytic in p around p = 0  and that the functional derivatives 
[6/6p(xl)... 6/6p(Xp)K J] Ip=0 have good decay as the points separate. In 
addition, as j gets large, the KJ(p) still tend to zero exponentially fast and 
the factors Zj(p) tend to appropriate Gaussians. This gives control over the 
generating functional, and hence a systematic treatment of correlation func- 
tions of all orders. We obtain explicit asymptotic formulas for correlation 
functions which extend the results of Gawedzki and Kupiainen. Theorem 2 
bounds the 2-point function: 

[a2(x, y ) -  (1 + o") -1 f l ( - A ) - '  (x, Y)I 

<~(9(1)[x-y[ -d+x+=, 0 < e < l  (12) 

The factor 1 + ~  is a dielectric constant. The truncated correlation 
functions G~, for values n >~ 4 are bounded by 

]G'(xt,..., Xp)l <~ (9(1) p! uoPT(xl ..... Xp)-a/2 + 1 diam(x 1 ..... Xp)-d/2 += (13) 

for some constant u o. Here T(Xl,..., Xp) is the product of the lengths of the 
bonds for a shortest tree on the points. Theorem 3 gives upper and lower 
bounds for the charge correlation functions g(x, y), gt(x, y). It also shows 
the vanishing of Z(qfx)= (e iq'~(x)) in two dimensions as the volume gets 
large. These last results are analogous to bounds proved by Fr6hlich and 
Spencer (4~ for a class of lattice dipole gases. 

We make a final remark concerning the thermodynamic limit of the 
Brydges-Yau procedure. This is to note that there is a well-defined RG 
transformation K j ~ K j+l and generating functional Z(p) for the infinite 
volume R a. This we can see because Eqs. (16), (24), (26), (27), (31), (32), 
(34), and (43) [plus (29) if suitably reexpressed] make perfect sense for 
infinite volume. All of our results, and those of ref. 1, if appropriately inter- 
preted, hold in this setting. This, however, does not prove the existence of 
the limit {K}A(~)--+ {K}Rd. We have not yet shown that the infinite-volume 
RG transformation is achieved as the N--* oc limit of RG transformations 
on tori A(N). 
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2. R E N O R M A L I Z A T I O N  G R O U P  T R A N S F O R M A T I O N S  

We begin with the precise definition of the model. The modified 
inverse Laplacian on the d-dimensional torus A =A(N)  is the operator v 
with the smooth kernel 

v(x, y ) =  IAI ~ ~ #P(~-Y)~(p) 
peA* 

v(P)= flp- 2e-p4( 1 - -  (~p ,O)  

(14) 

where A * =  (2~L Nz)d .  Then v is positive definite on functions f on A 
with ~ f =  0 and so defines a measure p~ on a suitable Sobolev space ~'~,(A) 
of (continuous) functions of this type. The initial interaction e -  v given by 
(4) is rewritten in a polymer expansion 

2 1] K~ x, 0)=expEG +K~ (15) 
{Xi} i 

The activities K ~ are given by 

KO(x,(~)={~O ~ x [ e x p ( - V ~ ) -  l] if Xis connected 
(16) 

otherwise 

where V~(~b) is the potential integrated over a unit block A. The sum 
is over disjoint polymers, where a polymer X is a union of closed unit 
blocks A with centers on Zac~ A. Following ref. 1, Section 1, we have used 
the "circle exponential" representation for the polymer expansion. The 
generating functional (5) may now be written 

Z ( p ) =  (e i(p'r = f e~(O'~) gxp[E] + K~ dl~o(~b)/[p=O] (17) 

We allow p to be a measure of bounded variation on A and interpret (p, q~) 
as ~ ~b(x) dp(x). 

Our goal is to perform transformations on this integral leading to 
similar functionals 

(ei(P,~))p,j=f ei(P,O) gxp(~ +KJ)((k, p)dp~j(q3)/[p=O] (18) 

where ~b, p, etc., are now defined on A j - A ( N - j ) .  Here the covariance has 
Fourier transform 

U(p) = flp-2(ep4 + a J) - '  (1 - 6p, o) (19) 
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where 1 + o j turns out  to be an effective dielectric constant.  The functionals 
KJ(X, ~, p) are assumed to come from functionals KJ(X, O, P) defined on 
pairs ~b = (O~, ~ku~), #, v = 1,..., d, by restricting to ~ = ~ ,  = ( 0 ~ ,  du~b). The  
KJ(X, tp, p) are to be analytic in ~, on a ne ighborhood  of the subspace 

= ~ ,  and analytic in p a round  p = 0 (we are more  precise abou t  this in 
Section 3). 

We now define a single renormal iza t ion  g roup  t rans format ion  f rom j 
to j + 1. In  the special case p = 0 the analysis reduces to that  of ref. 1. The 
first step is a f luctuat ion integral integrat ing out  high frequencies. We 
define, for integer L>~ 2, an opera to r  v # = v #'J  by 

~# (p) = ~p -2(eL"P" + crJ)- 1 (1 - 6e,O) 

and define a new covariance opera to r  

Then  we have 

(20) 

C j = v j - v # (21 ) 

(, 
(ei(O,~) )p,j = J ei(p'o)[ ''' ] dlav~ (O)/[P = 0]  (22) 

where 

[ "'" ] - I ei~P'c) gxp([] + KJ)(~ + (J, ;)  dl~cJ(() 

�89 CJP)] f exp([] + KJ)(( + 0 + iCJp, P) dl~cJ(~) e x p  [ 

= exp [  -- �89 CJp)] o~xp([] + K # (q~, p)) (23) 

Here  we take advan tage  of the analytici ty in ~b to m a k e  a complex con tour  
t ranslat ion ~--, ~ + iCJp. The functional  K # is obta ined from K j in two 
steps K # =  # - f f K  j, where K ~  J - K  denotes  the complex t ransla t ion step 
defined on K(X, tp, p) so tha t  

(3K)(X,  O, P) = K(X, 0 + iCJp, P) (24) 

and K-- ,  ~ K  denotes  the f luctuat ion step defined so that  

exp( [] + J~ K) = i~ c, �9 [ gxp( [] + K)]  (25) ' 

Indeed we define ~-~K= K(1), where K(t) is the solution of 

K(t)=#,e~* K+ �89 dsl2~,_,)cj* (Kr j) 

where K o o K o is the circle p roduc t  of functional derivatives. (1) 

(26) 
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Next we extract relevant and marginal pieces from K#(X, ~p, p). The 
point is to isolate and deal with separately the pieces of K # which do not 
decrease in size under the RG transformation. From K#(X, GO) we 
extract as in Brydges and Yau. A set X is called small ( X ~ J )  if X is 
connected and IX] = (the number of unit blocks in X) satisfies IX] ~< 2d; 
as we discuss in Section 3, this definition is a little different from ref. 1. 
Then define 

Fo(X, tp ) = K # (X ,  O, O)- �89 ~ F x tpu(x) 6a~,~(X) tpv(x ) dx 
II ,  V 

(27) 

where 

&~.(x) = -fl/lXI f [a2K#/aG(x) a~,(y)](x, o, o) dx dy (28) 

The extraction is 

Fo(X, g,)= IAjl E j - l f l  - '  &Jr  Ig,,.,I 2 (29) 
X ~ 5 .  o 

We extract p-dependent parts only from K#(X, O, p). The reason for 
the C-independent extraction here (i.e., no ~,2 terms) is that p-dependent 
parts of K naturally have improved power counting compared to p = 0 
parts. For p ~0 ,  translation invariance is broken, eliminating volume 
factors L a in each RG step. 

By analyticity in p we have 

K#(X, O, p)= Z ~/p! I [6~K#/6P(~'). 5p(~)](x, o, o) IeI dp(~,) 
p = 0  i = 1  

(30) 

Let 6 = ((~1 . . . . .  (~p),  where each 6j is a semiopen unit cube whose translates 
are disjoint and cover A. Then we extract small set pieces from (30) and 
define 

and 

p = l  6 

P 

• l/p! f6 [6PK#/6P(Xl)'" .6p(xp)](X, O, O) I-[ dp(xi) 
i = l  

ei(p) = y eJ(x, p) 
X 

(31) 

(32) 

822/66/5-6-7 
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The overall extraction is the sum of (29) and (32) and is implemented 
by finding a polymer activity gK # so that 

p) =exp { g ' ( p ) +  ,A,, Ej-�89 gxp( �89 + K # )((b, 

x gxp(Vq +gK#)((~, p) (33) 

The full definition of gK # is given in Section 5. 
In preparation for a rescaling by a factor L, we introduce a reblocking 

operation. For a polymer X, let 2 be the smallest L-polymer containing X, 
where an L-polymer is a union of L-blocks. Then we define, for any 
function K on polymers, a function ~ K  on L-polymers U by 

(NK)(U)= ~, I~ K(Xi) (34) 
{x~} i 

where the sum is over collections of disjoint polymers {Xi} such that 
Ui-g; = U and the overlap graph on {)(i} is connected. [The overlap graph 
is all pairs (i, j)  in the index set so J?~c~ Xj r ~.~ By classifying the terms 
{X~} in gxp(D +K) according to the L-polymers they determine by the 
above rules, we obtain 

gxp([] + K ) =  ~ l~ (NK)(Uj)=-NxP~ [5 + NK) (35) 
{Uj) j 

Then, defining K * =  ~3gK #, we have 

gxp(t~ + gK# )=gxp(I)(~ + K*) (36) 

Now combining these steps, we get 

(e i(p'r )p,j = exp[ - l(p, CJp)] 

= exp[ - �89 CJp) + ~J(o)] 

f e "~,~ ~xp(~(D + K*) d~. /[p  = 0 ]  • (37) 
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where in the last step we have absorbed -�89 6aj~ [gqi]2 into d~t~ and 
defined 

~ * ( p ) = f l p - - 2 ( e L 4 P " + ~ J + ' )  '(1 --r 

o-J + 1  =GJ-]-~yJ 
(38) 

Finally, we scale by a factor L to obtain a theory on Aj+ 1. We set 
KJ+I= J K * ,  where the scaling operator Y is defined on K(X, ~,, p), so 
that 

( JK ) (X ,  r PL) = K(LX, (b, p) (39) 

with q}L(x)= L d/2 ~(~(Lx), pL(X)= L all2 + lp(Lx). Then we have 

{ei(P'O))p,j=exp[-- �89 CJp)+gJ(p)]  ~ei(PL'~))pL,j+ l (40) 

Now we iterate this. Given p on Ao, define pJ on Aj for O<~j<~N by 
y ( x )  = prj(x), and then 

Z(p) = exp [--�89 CJpJ)+~J(pJ)] (ei(PN'~))pN, N (41) 
J 

This is the expansion. Note that the exponential has the form 1--[Ns Zj(p)  
referred to in the introduction. 

It is convenient to take one last complex translation and fluctuation 
step. With the special definitions C N= v N, A N = A (a  unit block), this yields 

~e i(pu'~)) ~ =exp[  I(_N, p',U - - 2 D  CNpN)]o~xP(E]+K#'/V)(O,  pN)/[P = 0  ] 

=exp[  1 u _ ~(p , CNp N) ] (1 + K ~'N)(A, 0, p N)/l-p = 0] 

=exp[  l(_N, _ ~ 1~ CSpN) _.[_ ~N(RN)] (42) 

Here we have made the special definition o~N(p)=log{(1 + K # ) ( A ,  0, p)/ 
LP = 0] }. Thus, we find the formula 

Z(p ) = exp[ - {(p, wp ) + E(p)] (43) 

where 

N 

(p, wp)= y, (y, cJy) 
j = O  

N 

~(p) = Z ~J(pJ) 
j - -O  

(44) 
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3. N O R M S  

We control the development of the polymer activities K(X, ~, p) by 
estimating the size of certain norms which measure growth in q~, decay in 
X, and analyticity in ~ and p. 

The variables ~9 = (~1, ~O:) and p take values in Banach spaces which 
we now specify. For  ~1 = ( ~ )  and q/2 = ( ~ )  we assume that the com- 
ponents are elements of C(A), the continuous functions on A with sup 
norm, equivalently, ~ ~ C(A x f2~), where f2~ is an index space, ~ = 1, 2. 
For the measure p we assume it is an element of the dual space C'(A), 
which is identified as the regular Borel measures with the total variation 
norm. 

We assume that K(Y, ~, p) is analytic in ~ on an open strip around 
the real subspace ~ = ~ =  ( ~ b ,  ~ ? ~ b ) ,  ~b~ ~s(A), and analytic in p in a 
ball around 0. 

For  n = (nl, n2) and p let Kn, p(X, ~) be the derivative of K(X, t), p) of 
order n with respect to ~ at ~ = ~ and of order p with respect to p at 
p = 0 .  This is a continuous multilinear functional on C(Axt21)nlx  
C(A x f22)n2x C'(A) p, symmetric in each of the three entries. We further 
assume that this functional is given by integration against a bounded Borel 
function from A p to C'(An), where zi n = (A x f21) n' x (A x f22) ~;. The value 
at x = ( x l  ..... Xp) is a measure on A" which we denote K,,p(X,~,x). 
Formally, we might represent the measure by a function K,,p(X, ~, ~, x) 
with ~ = (~1,..., ~1, ~,.. . ,  ~2)2 in A n. Then, formally, 

[ (~+OK(X,O,p) ] (45) Ko, (X, 

This is the notation we have used in Section2 [-if { = ( x , / J ) ,  then 
~({) = ~ ( x )  and if g = (x, #, v), then @({) = ~ ( x ) ] .  

Our basic locality assumption is that the measure K~.p(X, ~b, x, {) has 
support  in { in )7 ~ = (Xx  ~21)~ x (Xx/22)  "~ (there are no collars around X 
as there are in ref. 1). The localization in x is not strict. 

We first define the norm of K~,p(X, ~b, x) to be the total variation norm 

[IKn, p(X,  ~, X)[[ = sup [K.,p(X, qk, x; F)[ (46) 
11 F[I < 1 

where F~c(f(~). Actually, we usually consider the restriction of the 
measure to A = A 1,1 x ...  A 1,~, x A 2,~ x .-- A 2,n2 with A u e X and so consider 

Ilg,,,p(X, q~, x) 1~11. 
Dependence on the variable ~b is dominated by a large-field regulator 

G = G(X, O) whiCh will have the form 

G,~(X, ~b) = exp(~c[[l&bll 2~,x+ 1/c II~ll~x]), ~ > 0  (47) 
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where /10~I[ 2 is the Sobolev norm of order s on X, and c is a constant. S, X 

This is the choice originally introduced by Gawedzki and Kupiainen. (s) It 
differs from the G(X, ~b) of Brydges and Yau, who introduce collars around 
the region X instead of a boundary term. In the Appendix, we show that 
properties required by ref. 1 are still satisfied by (47). We define 

]lg.,p(X, x)llG= sup IXK=,p(X, q~, x)lr G-I(X , r (48) 

Dependence on the set X and points x is controlled by a large set 
regulator F = F(X, x) to be specified below. We define 

I sup ~ C(X,x) l[Kn, p(X,x) l~][a, p#O 
[[Kn, p[la, r= x,a (49) 

[ s u p  ~ F(X)IIKn, o(X)l~[ta p = 0  
k. do  A , X ~ A  0 

We assume translation invariance of K, so that the p = 0 norm does not 
depend on the explicit pin at A o. It is an important  feature that for p r 0, 
the sum on X is not explicitly pinned (but is implicitly pinned by x). This 
eliminates for p > 0 the volume growth factor L d which always occurs for 
p = 0 (see Proposit ion 5). 

// r/1 ;/2 Finally, for h =  (hi, h2), h = h  1 h 2 we define 

I[Kll~,r,h,~ = ~ (h"/n!)(uP/p!)[tK,,prlc, r (50) 
n,  p 

For  K independent of p the norm is independent of u and reduces to the 
norm ][K[[a,r, h of ref. 1. 

If l[K[Io, r,h,~ < oo for some choice of G, F, h, and u, we say that K is 
a local analytic functional. Such a functional has power series expansions 
in a strip of width h in ~ and a ball of radius u in p. 

In the remainder of this section we discuss the large set regulator F. 
For p = 0 we make a choice as in ref. 1, 

r ( x )  = A I~<~O(X) 

where A = L a+ 1, IJr is the number  of unit blocks in X, and 

O(X) = inf 1-1 0(]b]) (51) 
r b e ' c  

Here z is a tree composed of bonds b connecting the centers of blocks in 
X. Throughout  this paper, lengths such as [bl are measured in an l ~ 
metric. The function 0 satisfies O(s)= 1 for s = 0, 1 and 

O({s/L})<~L-a-lO(s), s>~2 (52) 
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where {x} denotes the smallest integer greater than x, As s ~ o e ,  
O(s) ~ s d+ '. 

For F(X, x) and p > 0 we require 

r ( x ,  x) >t 1 (53) 

F(Yw Y, (x, y)) ~< F(X, x) r (  Y, y) O(d(Xw 6~, Yw Jr))  (54) 

A possible choice is F(X, x) = F(Xw 6~), where fix = 6~ u .-- w c s  and ~ 
is a unit square containing x. Then, if IIKllG, r , h , , < ~ ,  we have that 
K,,p(X, x) has power law decrease in the separation of the components of 
x from themselves and X. 

However, because of the rescaling of p at every iteration, we will need 
to estimate after j steps the decay of K~,p(X, L-ix)  and still obtain the 
same power law decay in x. Thus we need extra factors of L-1  in the 
bound for K j and so extra factors of L in the norm. 

Here is the modification we employ. Let n(x) be the number of con- 
nected components of x, where we regard two points x~, x~ as joined if 
[x~ - x~[ ~< a. Here a is an arbitrary parameter; later we take a = 2 d. Define 
Nj(x) inductively: 

No(x) = 0 
(55) 

N++ 1(L- ix)  = Nj(x) + n(x) 

Equivalently, N / ( x ) = Z ~ =  1 n(Lkx) �9 Then we set 

FJ(x,  x) = L ca/2- ~) Nj(x)/'(X W r (56) 

Note that (53) and (54) follow by observing that n(x w y)<~ n ( x ) +  n(y). 
To understand the factor L ~a/2-~)N~r or better, L ~/2- ~)Nj(r-Jx) we 

have the following result. 

I . omma  1. Suppose j is large enough so that diam(L-Jx)<-% a. Then 

L ( d / 2 -  1)Nj(L Jx) ~ L(d /2  - 1 ) J ( T ( x ) ) d / 2  - 1 (57) 

where 

Z (x )=  ~I (Ix~-x~l/a) (58) 

Ix~-  xtsl > a 

Here r is a tree on (1 ..... p) minimizing the total length ~(~,B)~ Ix~-xB[. 

ProoL The connected components of x can be obtained by deleting 
the bonds (~, fl) in r with Ix~ -  x~l > a. Thus, we have 

n ( x ) = l +  ~ l ( [x~-x~l>a)  (59) 



RG Analysis of Correlation Functions for Dipole Gas 1289 

The same ~ works for L -kx ,  and so 

j - -1  
Nj(L ix ) - -  ~ n (L-kx )  (60) 

k = 0  

= (~,/~)~ ~ 

~>j+ ~ min(j, 1OgL Ix~--xya) (61) 

Ix= - xBI > a 

Since we a s s u m e j > l o g L  ]x=-x/3l/a, the result follows. | 

On the L-block scale we define 

F ( 1  ),j + 1( U,  x )  ~-- L (d/2 - 1 ) N}t+)i(x)F (1)( U L_) r I )) (62) 

where (~) Nj+I (X  ) = Nj+ ~(L-~x) and F(~)(U) = F(L-~U). 
In Section 6, we will need to estimate F (~) in terms of F. F o r p = 0  we 

have the result of ref. 1: 

fF(X),  X e  5 P 
F(1)(. ,Y) 

~L -d-'F(X), Xr (63) 

Their proof contains an error, since it uses the implication X connected and 
Xr  5 P ~ ]XI < [X]. There are easy counterexamples. This is why we needed 
a new definition of small sets. For us the hypotheses imply also IXf > 2 d 
and then the implication is true, provided L > 2  d, which we henceforth 
assume. A further remark on small sets: An alternative procedure is 
possible which works for any L i> 2. We can take the small sets of ref. 1, but 
a modified notion of connectedness. This alternative leads to a number of 
tehnical modifications of ref. 1 which are avoided by our adoption of the 
clumsier definition of small set and the assumption L > 2 a. 

For  p ~> 1 we generalize (63) to the following result. 

Lemma 2. The following relation holds: 

5 L d/2- 1, 
/~(1) , j+  1 (2  , X) ~ I 'J(X,  x )  [ L  3, 

Xw6x~Se 
(64) 

Xw6x~Se 

Remark. This result is not exactly what will be needed in Section 6. 
For  any 7 ~> 1, if we choose 0 and A so that 

O({s/L})<<. [ c (7 )Ld+l ]  - l  O(s), A>~c(?)L a+~ (65) 
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the proof which follows extends to the bounds 

f 
l, p =0,  
L - a  1, p = 0 ,  

F(1)'j+I(X'x)<~c(7)?-Ix'~6~tFJ(X'x) L a/2-1, p>~l, 

L -3, p >>- 1, 

X s ~  

X W 6 x r  

The quantity c(?) = "~ 2d goes to 1 as ? ~ 1. [In ref. 1, c(y) = 2.] 

ProoL We have 

(66) 

F (1)'j+ ~(-~, x) = L (a/2 1) ~vj(,,)L(a/2 - ~)~(,,)FO)(~w d,,) 

We will show that 

(67) 

~ L a/2-1F(X ~ 6x), 
L(a/2-1)n(x)F(1)( X ~  ~x) ~< [L -3F( ) ( t d  6x), 

and then the required result follows. 
For  n ( x ) =  1, we use (63): 

L(a/2 1)F(1)(~ w ~,`) <~ ~L a/2- ~F(Xw 6x), 
[L  3F(Xw 6~), 

X w  S ,, ~ Se 
(68) 

X u 6 , ` r  

X w 6 x ~ J  
(69) 

X w 6 , , r  a 

[Note that n ( x ) =  1 includes all cases X w  6,` ~ 5C] 
For n(x) > 1 we first suppose X w  6 x is connected. The proof of (68) is 

by induction on p, the number of points in x = (Xl ..... xp). If p = 1, then 
n(x) = 1 and the result is true. For  p > 1, let z be any tree on X w  6,,. Since 
n(x) > 1, there is a pair (x~, x~) with ]x~-x~]  > a = 2 a. The chain of bonds 
in z joining 6x~ and 6~ must then join at least 2a+ 1 blocks, and any such 
chain (being a large set) must contain unit blocks 6t, 62 which lie in the 
same L-block A*. Break the tree between 61 and 62. Then we have a split 
X• 6,` = (X1 w 5,`,) w (X2 w 6,`2) where each piece is connected and has 
blocks in A*. Since A* is double counted, we have 

F(1)(Xw 8,,) <. L - a -  1F(1)(X1 w 8,`1) F(1)()72 u 6x2) (70) 

By the inductive hypothesis we proceed with 

L(d/2- 1)n(x)F(1)(.~ k 3 ~,`) 

<% L (-a 1)[L(a/2-1) ,(,`1)F(1)(~ 1 t3 ~,`, )1 [L (a/2- 1)n(x2)F(1)(~ 2 W ~x2)] 

~< L-3/ ' (X1 t3 6xl ) [ ' ( X  2 k.3 6x2 ) 
= L - 3 F ( X w  6x) (71) 
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Finally, suppose Xw 6~ is not connected. The proof is by induction on 
the number of connected components of Xw 6x. If there is more than one 
component, we write Xw6~= (X~ W6x~)W (X2W6x~), so that X~ w6~ is 
connected and 

r(Zu6x)=r(xlw6x,)r(x~W6x2)O(d(ZlU6x,,X~U6x2)) (72) 

Then we have by (54) and the inductive hypothesis 

L(a/2 i)n(x)/-(1)(~'k_ ) r 

L ( d / 2 -  i)n(xl)/~(l)(.,~ 1 U r Z ( d / 2 -  1)n(x2)/~(1)( ,~2 g ~x2) 

x 0(d~1~(21 u 3x~, 22 u 3~)) 

<~ L-3F(X1 u 65x, ) F(X 2 u 6x2 ) 0(d(A" 1 u gx,, )(2 u 6x2)) 

=L-~r(xv6~) (73) 

Here we used the 0 bound (52), which holds since d(1)(.~, Y)<~ L-Id(X, Y) 
and d(Xiw6~,,X2u6x~)>~2. I 

4. E S T I M A T E S  O N  ~ K ,  # - K  

In this section we obtain estimates on the size of the polymer activities 
K under each of the renormalization group steps K ~ ~ K ,  K--* ~--K. The 
estimate on K-~ Y K  is based on similar results of Brydges and Yau (1) but 
now generalized to take into account the dependence on the external field 
p. The estimate on Y-K is a generalization of a result in ref. 2. 

In the following we often want to take the functional derivative of a 
product of functions. For  the product functional K(p)=Kl(p) . ..KU(p), 
where K' is defined on p~C'(A) and has derivatives given by bounded 
Borel functions, we have that K is differentiable and the pth derivative is 
given by the formula N 

Kp(X) = 2 U K'l.U)r(x~u)) (74) 
~ P ( N , p )  i=1 

Here the sum is over ordered partitions of {1,..., p} into at most N sets, i.e., 
n~P(N, p)is a map from {1,..., N} to subsets of {1 ..... p} (possibly empty) 
such that n(i)c~n(j)=SZ~ for i e j  and U ; ~ ( i ) = { 1  ..... p}. For x =  
(X 1,..., Xp) we have defined x.u ) = (Xr)r~,U)" 

- -  I--I N K i ( ~ l )  with K ~ defined on ~ = (tpl, ~92) E For  a functional K ( O ) -  i=l 
C(A x g2~) x C(A x ~2) with derivatives given by measures, we have that K 
is differentiable and the derivative of order n~, n 2 is given by the measure 

N 
K,,,,2(~1, ~2)= Z 1-[ K'  i 2 Ivl(i)l, lv2(i)l(~vt(i) ' ~ v2(i)) (75) 

v l~P(N,  nl ) i=1 
v 2 E P(N, n2) 
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where {~ = ({~',..., ~ )  e (A x s ~ = 1, 2. (Here we have written the 
measures as if they were functions.) We abbreviate (75) as 

N 
K,(4) = ~ 1-[ KIw)I(4~u)) (76) 

v c  P(N ,n )  i - -  t 

For a function K(q/, p) of both variables a similar product formula holds. 

P r o p o s i t i o n  1. Let C be the covariance of a Gaussian measure 
and suppose a continuous family of large field regulators g(t), 0 < t ~< 1, 
satisfies the homotopy property 

#u s)C * g(s) <<. g(t), 0 ~< s < t ~< 1 (77) 

and Eq. (83) below. Suppose F(X, x) satisfies (53) and (54). Let h = (h, h), 
h ' =  (h', h'), h ' <  h, be given and let K =  K(X, t~, p) be a functional such 
that 

HK,, g(0),r,h,, ~< ~6 ,~h?i  (78) 

where IIC0ll is given by (87). Then there is a functional ~ K =  ~K(X,  r p) 
such that gxp( [] + ~ K )  = #c * gxp( [] + K), and 

[]YK[[ g(l),/2h',u ~< ]]K[I g(O),r.h.u (79) 

Proof. We have ~ -K=K(1) ,  where K(t) is given by (26). In detail 
this says 

K(t,X)=#,c,X(X)+�89 as ~ 2 a~d~ 
X1,X2 al,a2 

x c(4,,  ~2) u ( , - , c  * [Ko,(s, X,, 4,) Ko2(s, X2, 42)] (80) 

Here the sums are over disjoint pairs X1, X2 with X1 u X2--X, over 
ai = (1, 0) or (0, 1 ), and over 4i in (A x f21) or (A x f22), depending on ai. 

Taking derivatives, we have 

K.,p(t,X, 4, x) 

=/~,c * K,,p(X, 4, x) 

s tdS E E E E f d411 d~2 C (~ , ,  42) +�89 
0 X t , X 2  al,a2 v ~ P ( 2 , n )  ~P(2,  p) 

x PU-~)c * [K., + i~o)l,>(1)t(s, Xx, 4'1, 4~(x), x~(1)) 

x K,2 + >(2)t,l~(2)l(S, X2, ~ ,  4v(2), X~z(2))] (81) 
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[Note: (~;, ~v(~)) is understood to be arranged so variables in A x ~  ~ 
precede variables in A x 02.] Inserting characteristic functions, and using 
the consequence of the property (77), 

a n d  s i n c e  X 1 (3 X 2 = ~ ,  

we find 

g(s, X)= g(s, X1) g(s, X2) 

(82) 

(83) 

IlK,,,p(t, X; x) l~llg(,)~ ]lK,,p(X; x) l~ll g(O) 

+ ds E E J E c(~i ,~i)  
XI,X2 at,a2 v, Tz zJi,A �89 

• I~ ]lK~,+l~(i)l.l,~(i)l( S, Xi, X~(i)) 1A;• 
,=1,2 

where 

(84) 

C(AI, A2)= sup sup ](c3~'c3~2C)(xl, x2)t (85) 
Ic~i[ ~ 2 Xi~Zli 

Next we do the sum over X and A. Since Xs~ A;, we may use from 
(54) 

F ( X ,  x )  ~< F ( X I ,  x~(1) ) r ( X 2 ,  x~(2) ) O(d(zl ' l ,  3 '9) )  (86) 

We define 

]lColl = sup ~ C(A,,  A2) O(d(A,, A2) ) 
AI A 2 

Then we claim that 

(87) 

f2 + ds Y~ • rlColl ]-I JlKa,+lv~OJ,l~'~l(s)llgr (88) 
al,a2 v, rc i= 1,2 

For p = 0 the argument is given in ref. 1. For p > 0 we generalize as follows, 
taking into account the dichotomy in (49). Either Ilt(1)l r 0 or 1~(2)1 r 0; 
suppose Irc(1)l~0, but possibly 1~(2)1=0. Then we sum over 
{X2: X2~A'9} and Av(2) (but not A'9) to identify something dominated by 
IIg,2+lv(2)l,l~(2)lllg(~), r. Next do the sum over 3'9 to identify IlC011. Finally, 



1294 Dimock and Hurd 

sum over X~, Av(~), A'~ to get IIKa~+lv(1)l,l~(upllg(s), r [no pin is required, 
since I~(1)1 # 0 ] .  

Now the sums over partitions into two sets only depend on the 
number of elements in each set and we simplify to 

II g.,p( t)l[g(,),r << . Ilg~,pll g(o),r 

+ IICoII ds ~ ~, 2 n! pl 
al,a2 n l + n 2 = n  p l + P 2 = p  n i l  nflpl!  Pfl 

• H HKai+ni, pi(S)[Ig(s),F (89) 
/ - - 1 , 2  

Multiplying by hn/n! and uP/pl and summing over n, p yields 

[IK(t)tl g(O,r,h,~ <<- IIKII g(o~,r,h,~ 

f2 + IlColl ds [O/~h IiK(s)ll~(s),r,h..] = (90) 

This differential inequality gives the result by ref. 1, Lemma 8.4. 

P r o p o s i t i o n  2. Let K(X, O, P) be a local analytic functional and 
let 

Y-K(X, O, P)=K(X,  O + i(6Cp, 02Cp), p) (91) 

Then ~--K is a local analytic functional and 

I1 Y-KI] a,r,h,u <~ []KII G,F,h + ~ IICollu, u (92) 

where 7 = sup~A F ( ~ ,  x) and IIC011 is given by (87). 

ProoL We compute, for p #0,  

(J-K).,p (X; 4, x) = ~, f K.+ i~,l,l~o~l(X, (4, ~'), X.(o~) ~ iC(4'r, Xr) d4' 
~z ~ P(3, p) r c ~ '  

Here re= (~c(0), ~'), re'= (re(l), re(2)). We have 4 ' =  (4'1, 4;) 
4~ ~ (A x f2i) € Also, (4, 4') really means ((41, 4' 1), (~2, r 

Inserting characteristic functions and taking the norm yields 

lt(JK)n,p (X; x) lzJla 

~<~/ Ig .+ t . ' , . l~ (o) t (g ;  X~(o))lz• iF] C(A'r. A,,) 

(93) 

with 

(94) 
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where A ' =  {A': r e ~'}. By (54), the large set regulator satisfies 

r(X'x)<~F(X'x '(~ ~ 70(d(d" A~,)) , (95) 

since J(~ A'~. Therefore 

s 1 
X X , A , A '  r E ~ '  

x F(X, X=(o))IPK.+ i.,i,l=(o)l(X, X=(o)) 1~ • 

<~ Y~ / ' "  IlCorl ~''~ II.K.+l.,i,l.(o)lli~,r (96) 

The last step is straightforward for the terms with ~ ( 0 ) ~  if we use 
Co(A', A) <~ IlCoH. If ~(0) = ~ ,  n'(0) r ~ ,  let s be an element of ~'. Keep A; 
fixed and sum over X, A, {A'}~e~. Then X~A'~ and so we can identify 
something dominated by []K.+l~,l.~(o)j]G,r. Finally, sum over d'~ using 
Z~; co(A;, A~) <~ IlColl. 

We continue with 

II(~K)~,plIG,~ ~ P! 
P0+Pl +P2 p0!  Pl[ P2[ 

=p 

(7 IIC01r) p'+~2 IJK,+p,,pollG, r (97) 

Now multiply by hH/n!, uP/p!, sum over n, p, and rearrange the sum to get 
the answer, l 

5. E S T I M A T E S  ON eCK, # K  

In this section we obtain estimates on gK, ~'K generalizing similar 
results of Brydges and Yau, (1) who combine ~ and g into one step ~ # .  We 
begin with a precise formula for the extraction operation K ~  #K, which 
yields the modified functional g K  after extracting ~xF(X),  F(X) = - 
Fo(X ) + #(X) from K. 

Let R(X)= (e F -  1 )(X) (=0  if Xr 5r let I(X) be any function satisfy- 
ing I(X) - K(X) - F(X) (i.e., they are equal when g, = ~ho), and define J(X) 
by 

J(X) = I(X) + F(X) - ~ 1~ R(Xi) (98) 
{X i }  ~ X i 
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The sum above is defined to be empty if X is not connected, and to be over 
all collections {X~} of distinct polymers with Ui x;  = X if X is connected. 
The condition on g K  taken from ref. 1, Eq. (2.6) is: 

#xp([3+#K)=~(gxpJ)(X)exp[- ~ F(Y)] 
X ~Y: Y~X:f:~J 

(99) 

We expand gxp J and perform a Mayer expansion on e x p [ - Z y  F(Y)] to 
obtain the condition 

#xp(~+~K)= ~ ~ I]J(X~)~(e-F--1)(Yj) (100) 
{x~} {rj) ~ j 

where the {X~} are disjoint, the { Yj} are distinct elements of 5 e, and each 
Yj intersects some X,. Grouping together sets that intersect, we fulfill this 
condition if #K  is defined by 

eK(X) = ~ H J(X~) l~ (e F_ 1)(Yj) (101) 
{Xi},{ Yj} ~ X i j 

The sum here is over collections {X,}, {Y j) which satisfy the above condi- 
tions, (U x~) w (U Yfl = x, and whose overlap graph is connected. 

To complete the specification of #K, we must specify I =  I(X, ~, p), so 
that I - K - F  and yet is irrelevant. If X r  p, then F, R = O  and we take 
I =  K. We write 

K(X, ~, p)= Ko(X, O)+ Kp>o(X, tp, p) (102) 

where Ko =K(p =0),  and similarly l=Io+Ip> o. Then, for X~Sf  we define 

Io(X,t~)=(Ko(X,~)-K,,<~2,o(X,~b))+W(X,@) (103) 

where K,~2,o(X, ~) is the expansion of K o up to second order in ~h, 

K.~2,o(X, ~,) = Ko,o(X, O) + �89 y~ f a x  dy K2,o(X, 0; x, ~, y, v) ~,.(x) q~v(Y) 
p,v 

(104) 

We need W -  K n ~ 2 ,  o - -  Fo, and we choose 
1 

W ( X ' @ ) = ( 2 ] X ' ) - I  Z fo d s f x d z f d x d y K 2 ' ~  
[~, v, o- 

x [~ . . . .  (s) 4,~(Tx~(s)) ~,v(~,.(s)) + ~,.,~(s) ~.(~,=(s)) 4,v~(~.(s))] 

(105) 
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where 7~ is a curve from z to x lying entirely in X defined in some 
standard fashion. Lastly, we define 

I~> 0(X, 0, P ) =  K~>o(X, ~, p) -g (X ,  p) (106) 

To estimate 8K, N K  we will use the following result. Let ~ ( N ,  X, z) 
be the set of all ordered N-tuples (X~,..., XN) of nonempty subsets of X" 
such that: 

1. U,x~=X.  
2. At most v of the X~ overlap. 

3. The overlap graph for Xi,...,XN [i.e., all pairs (i, j) so 
Xi c~ Xj # ~ ]  is connected. 

L e m m a  3. L e t / g  ~ rig(N, X, ~) and 

N 

K(X)= ~ I~ Ki(xi) (10"/) 
(X 1 ,.,., XN)~ ~,/~ i = 1 

Then f o r T > l  a n d s > 0  
N 

]]K]I 6(~),I',h,u <~ N! (4.3d/log o/)N-- a ]--I IlKSil G(,/~),Tr, h,, 
i = 1  

where (TF)(X, x) = 71XIF(X, x). 

Proof. 

(108) 

(Compare ref. 1, Lemma 5.1.) Taking derivatives, we have 

K~ p(X, ~, x ) =  2 2 I~I i X , Kiv(ol ,  l~(~)l ( ~, ~(i), x~u)) (109) 
v~P(rt, N) (XI,..., X N ) ~ "  i 
Tc ~ p(p, N) 

Lemma 9 in the Appendix shows that 

G ( e ,  ~ ' ~ ) -  1 ~ I ]  G(8/7~, X i )  i ( 1 1 0 )  

i 

We take the measure norm of (109) on A, multiply by this inequality, and 
take the supremum over fields to obtain 

IIK.,.(X;X) I~IfG(o).<Y~ ~ 17[ i X 1 ' IIKiviijt.j~.~l ( i , x = . ) )  zv~,,llG(~/.) 
v,= (X1,._, XN) i 

(111) 

Next, by the overlap connectedness, we have 

r(x,  x) ~< [I r(xi,  x~(,)) (112) 
i 
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We multiply by this, sum over X and A, and sup over x. Then the sum over 
(X~ ..... XN) is estimated in a standard way by summing over trees T on 
(1,..., N) and then summing over (X1 ..... XN) with overlap graph containing 
T. We prune the lines of T from the twigs inward, using for each line (i, j) 
the bound 

~ IX~I ~' ' F(X,, x) IIKI~,)h~(O(X~; x) I~,,[IG(~/r 
Av(i) Xi: XiF~.Yj~- ~J 

~< ( 6 , -  1)t (log 7) -~ae- 1)(3 d [yjl)[lKiw)h~(,~Hc,(.~/.~:),.~,r (113) 

Here 6~ is the coordination number for i in the graph T and we used 

[xI 6~- ~ ~< (6~- 1 )! (log ~) (6~-1) 7 Ixl (114) 

For p > 0, we leave until last the sum over X~0, where i 0 is chosen so 
that z(io):A ~ .  In the last step no pin is needed and we just get 

6io] (log y) 6'o IlK'i~162 Gr162 

Thus we have 

y '  6,o! ( logy)-% lq [(6~-1)!  (logT) -~6~ 1)3a] 
v , ~ , T  i ~ i  0 

•  * 
i 

(115) 

Now 6io!<~(N-1)(6~o-1)! and Z T F L ( 6 ~ - I ) ! < . . . ( N - 2 ) ! 4  N-1 (by 
Cayley's theorem) and Y,, ( 6 i -  1) = N -  2. Thus, 

ItK~,pllG~),r~ ( N - 1 ) !  (3d-4/1og 7)N-- l ~ ]-I I [Kiv( i ) l , l=( i ) l l lG(e / r  - 
v , / t  i 

<~N!(4.3d/logy) N ' ~, n!p! 
~., ni = n,~d~., pi = p 

1 K~ lq • - - I I  n.p, lIG(~/~),~r (116) 
-,"ng! Pi[ 

For p = 0  the argument is similarJ 1) Now multiply by (hn/n!)(uP/p[) 
and sum to complete the proof. | 

i . a m m a  4. (a) There are constants c, C such that for any g 

IlFII ~),r,h,~ <~ C(1 + 1/eh~) IIKII g,r,h,. 
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(b) If ]IK[] g,r,h,u <- c(ah~/1 + eh2), then 

lie +-F- 11[a(~),r,h,, ~< C(1 + 1/~h~) I[Kllg, r,h,~<~ cC 
(117) 

2 .< c2C lie +-F- 1 T- Fl[a(~),v,h,,<~ C(1 + 1/eh2) 2 I[K[I g, r,h,~-~ 

Proof. (a) The bound on Fo(X, O) = F(X, 0, 0) is proved in ref. 1, 
Lemma 4.1. For Fp>o = g we simply note 

gp(X,x )={Ko,  p(X,O,x) if otherwiseP#0andXwaxeSe (118) 

and hence Hg[I <~ [IKI[. 

(b) This follows from (a) as in ref. 1, Lemma 4.2. | 

Proposition 3. Let ~h~>l,  0 < 6 a < e ,  and 1<7~<2. Then there 
are constants c, C1, C2, C3, so that if 

HKIIG(,),~=r,h,~ <~ c log 7 lag h2/(z + & h~)] (119) 
then: 

(a) 

(b) 

(c) 

I{III ai~),r,h,, <- C1 tlKIl a(,),r,h,u 
I l J -  Ill G(~).r,h,~ < (C2/log ~/)(1 + z/eh2) 2 2 {{KII a(~),,r,a,~ 
[ r~K-  Jl[ c(~+ a,),r,h,~ ~< (C3/log 7)(1 + v/&h2) 2 2 [IKII 6(e),y2F, h,u 

Here ~ is the maximum number of distinct small sets with nonempty inter- 
section. 

Remarks. Combining (a)-(c) gives a bound on [r~Kl[. The quantities 
g K - J  and J - I  are seen to be of (9(llg]l 2) and hence small. However, the 
crude estimate (a) on the first-order part I does not exploit the cancella- 
tions introduced by the extraction operation, and so does not show the 
required contraction. An improved bound on I using these cancellations 
will be proved in Section 6. 

Proof. (a) The result [l/ol]~(,0(1)l[KoLI for I o ( X , ~ ) = I ( X , O , O  ) is 
just as in ref. 1, Chapter 4. For the p derivatives of I (p > 0) we have 

/~ p(X, ~; x) = if n > O o r X w a x 6 5 ~  
' , ; - K o ,  p(X, 0; x) otherwise 

Thus (Lip>oil ~<2 I]Kp>o] I. 

(b) Recall J - I =  ( F - R ) - R  +, where R = e  e -  1 and 

R + ( X ) =  ~ 1/N! • n R(Xi) 
N = 2 (XI , . . . ,  XN) i 

(120) 

(121) 

822/66/5-6-8 
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Here the sum is o v e r  ( X  1 ..... X N )  E ~ ( X  ~ N, r) with X i C X  j and X~e 6e. By 
Lemma 4b we have 

ILRII G(~/~),~r,h,. <~ C(1 + r/eh~) I[K[] G(:),~r,+,,: (122) 

[ IF-  RI[ G(e),F,h,~ ~ C(1 + z/eh~) = IIKI[ 2 (123) G(e) ,F,h,u 

By Lemma 3 

II/+ll~<~,r,h,,,~< ~ (4 3a/logy) N ~ R N �9 H I1 m~/ , ) ,~ , r ,h ,~  124) 
N = 2  

Now using (122) we find 

]]i+lla<~/~,Tr, h,.<~ (2"4" 3a/log y) C2(1 q- r/g.h~) 2 IK ~<~),r h,: (125) 

provided c is taken small enough so that the infinite series is dominated by 
twice the N =  2 term. The required bound on [[J-III (with a new constant 
C2) follows when the bound on R § is combined with (123)�9 

(c) We write 

( g K -  J)(X) = 
1 N 

N' M! Z Z l~ J(X,) 
N>~1,3.4>~0 " (X  I ..... XN) (YI , . . . ,YM) i=1  
N + M > ~ 2  

M 

• 1~ ( e - F -  1)(Yj) (126) 
j - - 1  

where the sum is over sets (XI,..., XN, Y~ ..... YM) in J/l(X, N + M ,  r) such 
that the Xi are disjoint, the Yj are distinct elements in 5 ~, and each Yj 
intersects some Xi. Thus, we may apply Lemma 3 again. However, first 
note that because of the additional restrictions on X ,  Yj we may replace 
(110) by 

G(e + fie, X) - 1 = a(l~, X) - -  1 G( cSe, X) - 1 

N M 

<~ 1-I G(e, X,) -~ 1-I G(&/r, rj) i (127) 
i = 1  j = l  

With this modification we have 

(N + M)! (4.  3a~ N+M-' 

N~> I,M~>0 
N + M ~ 2  

N - - F  (128) 
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Combining (a) and (b) yields 

IIJH G(~),Tr, h,u ~ 2C1 [JKJ[ GU.),~2r, h,. (129) 

and by Lemma 4b 

]l e - F -  l l l a (6e / z ) , yF ,  h, u <<. C(1 "4- ~'/~,~ h~) [IKII a(~),Tr, h,, (130) 

Insertion of these two inequalities into (128) leads to the required bound 
provided c is small enough that the infinite series is bounded by twice the 
N + M = 2 t e r m s .  I 

Now we turn to the estimate on ~ 'K defined in (34). The natural 
estimate for ~ K  is in terms of a new norm for K [cf. ref. 1, Eq. (3 .2)]  

IIKI[ (1) G,r,h.~ = '~ h"uP/n! P! (1) [IKn, p G,F (131) 
n, p 

where 

fsup p = 0 
, A , X :  X ~  A(O ) 

IIK.,pJl ~ r  = ~ 4 ~' ~ F(J?) IIK.,o(X) l~[Ic 

(sup ~. r(Y,x)liX~,~(X,x)l~lIG p~O 

Here F is a large set regulator on L-sets and A(o ') is an L-block. 

then 

P r o p o s i t i o n  4. I f 0 < 6 < l  and 

IIKII ~,)~r,h,. 4 6(log 7/4' 3 d) 

(132) 

(133) 

(135) 

~ IX,  I ~'-1 F(Xi, x)IlKiv(i)hl~(ol(X,; x) l~v~jl G 
ZJv(i) Xi: XiF~ g j ~  f~ 

f , ( 1 )  ~< (6~- 1 )! (log 7)-(6~- 1) (3 a [~j[) jlKl~u)l "l'~u)l I1G,~F 

II~KHG, r,h,, ~ (1 -- 0) -1 IIKJl (1) (134) G, yF, h,u 

Proof. The definition of ~ K  almost fits in the framework of 
Lemma 3 and we follow that proof, noting the differences. Since the Xi do 
not intersect, we may replace (110) by G(U) I<~FIiG(Xi) ', by taking 
Lemma 9 in the Appendix with ~ = 1. The connectedness condition is on 
the )?i so we use F(U,x)~I-liF(X~,x~u)) instead of (112). Instead of 
(113), we have 
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This yields 

H~KHa, r,h,.~ ~ (4.3a/log7) N l(llKll~,)~r,h..) u 
N = I  

~ < ( 1 - ~ )  1 IlK[If1) | G,yF, h,u 

P r o p o s i t i o n  5. Let F (~/and F be large set regulators which- satisfy 
the inequality (66) for some 7 >/1. Then, for any K, 

H/p=O ls~H (~) L a (136a) G,r,l~h <~C(7) Ngp=oasAIG,~-~r,h 

Ilgp > o 1 ~11 ~ <~c(~)t d/2-x IIg~>o 1~11G,~ ~r,h,,, (136b) 

G, rC I,h,. I[K l ~l[ a,~-~r,h,u (136C) 

Remark. We use the notation ls~ to mean l x ~ r  and 1~ for 

Proof. For (a) 

Ilgp=o ls~ll (aia,r.~,h --sup ~ F(1)(X) Ilgp=o(X) l~lla, h 
~o ~ ~ , x~ ;~A~l  

~<C(7) sup Z Z (~-~r)(x) IlK~=o(X)1~11~,~ 
A~ t) LIO~,~O l) A , x e ~ ; X = ~ o  

<<.c(7) L a IIKp=ol sAIo,,-~r,h 

In the second line above, the sum over Ao is over unit blocks of A(o ~). The 
proofs of (b) and (c) are similar. For (b) there is no factor L a, since there 
is no pin for the sum over Y. | 

6. THE M A I N  T H E O R E M  

We are now ready to state and prove bounds on the functionals 
KJ(X, ~, p). These will be used in Section 7 to determine bounds on the 
correlation functions. 

Throughout this section, q is a parameter with l / 2~r  I< 1 and C, 
stands for constants which satisfy C, ~ 1 as ~/~ 1. 

We describe the specific norms used to measure the quantities K j. The 
large-field regulator has the form GJ(X,(b)=G~j(LX, L-(d/2)+lq)(./L)) 
from (47), with 

~ j =  ~:o 2- i  (137) 
i 

Then xo< ~cj <~ 2xo and we choose ~c ~ small as specified below. 
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The large-set regulator F j has the form (56): 

U(X,  x ) = L  (a/2 l)Jw(X)F(Xw6~) (138) 

where F(X)=AIXIO(X) satisfies (65) with 7=r / -~ .  We will also consider 
r/~F j defined by 

(r/~FJ)(X, x ) =  r/~ IXlFJ(X, x) (139) 

These also satisfy (53), (54). 
The ~-derivative weights are independent o f j  and are taken to be 

h = ho(1, I) (140) 

where h 0 = aL (d/2)+~ and a is arbitrary, except that we want a = C ( ( l  _ q ) - l )  
if t/--. 1. 

Finally, the p-derivative weights are taken to be 

uJ=L (d/2--1)jlgO 

u~ (1 -~)h~ - I  

Theorem 1. Fix q and let L be sufficiently large, or fix L > 2  d 
and let q be sufficiently close to 1. Then for z real, [zt sufficiently small 
(depending on L, ~/), and 60 = 6 tz[ eh~176 we have 

I] KJ]I GJ.rJ, h,.J <~ 6~ =- (C/L) j 6 ~ (141) 

for some constant C = C, with C, /L  < 1/2. 

Proof. The proof is by induction on j. For  j = 0 the functional K j is 
independent of p and we use the result of Brydges and Yau ~ (see also 
ref. 2). We have 

HK~ Go r,h,.o ~< 6 0 (142) 

provided Izl is small enough that 60< (8e) 1 
Now we assume (141) holds f o r j  and then prove it for j +  1 through 

the sequence K # = J - ~ K  j, K* = N g K  #, and K j+ ~ = J K * .  
For  the first step we introduce 

6#(x ,  r = c~j(x, ~) 

r#(x,  x)= (qrJ)(x, x) 
(143) 

We interpolate between G j and G # by 

g(t, X ) =  EGJ(X)] ~- '  E~/ IX lG#(X) ]  t (144) 
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Then g(t, X)  satisfies the homotopy property (77) provided x0 and hence 
xJ is small enough, as proved in Proposition 6 in the Appendix. 

By Proposition 1 we have 

II~ K~II G~',F#,,h,.~ = I t~ Kql g(, ),FJ,,Th.uJ 

(145) 

provided 6J~<(1-r/)2hg(16 [IColl) -~, and it suffices that 6 ~ satisfy the 
inequality, which gives another condition on Izl. 

Furthermore, by Proposition 2 we have, for K # = J ( ~ K J ) ,  

IlK # tl G~,FfA,rl2h, uJ ~ II~gJII G~,r~,,Th, uJ ~ a j (146) 

since 7 # =rlL (d/2 1)j/'(A) and so 

rl2ho + 7 # l[ Coil u j = t/2ho + r/V(/l ) [I coil u ~ ~ rlho (147) 

Now define 

G*(U, ~) = 6~j+,(U, ~o) 

/~*(U, x) =/'J+ l'(1)(O~ x) 

h* = ho( L -a/z, L -a/2- 1) 

(148) 

We will use Proposition 3 and the bound on K # to show that 

[ )gK # [[ (1) ~ (C./L) a j O*,rl-lF*,h*,uJ (149) 

Then by scaling for K J + I = S e K  *, GJ+I=St 'G *, and F j+l  = S e F  * and 
using Proposition 4 for K* = M(gK #), we complete the proof with 

LI/J+ ~ll GJ+~,r,+,,h,~J+, = HK*lIG*,r*,h*,~J 

~<r/ I IIgK#ll~ G*,~I IF*,h*,uJ 

<~ (C~/L) 6 j = 6  j+ l (150) 

[The condition on lICK # II r for Proposition 4 is easily satisfied given that 
(149) holds.] 

To establish (149), we estimate g K  # - J ,  J - / ,  and I separately. First 
note that r/-1F * and t/2F # satisfy (66) since 
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(~ ~F*)(2, x)= (~ ~)I~I('FJ+~'(~)(2, x) 
~ L d/2 - 

~< (q-,)l%l") EC,(~I4Fg)(X, x)] ( L  3 

• La/2- 1 
= c ( n z r  ~ )(X, x) ~L-3 

1305 

X u 6 ~ e  SP 
X w b ~ r  P 

X w b ~ S f  
(151) 

X U b x r  ~ 

Thus, we may 
using also h* <h # =-q2h to obtain 

( 1 )  I �9 �9 ![ ~ - Jll G*,u- F ,h ,W 

Crl Ld  II ~K~ - J]l G * . , ~ r ~ . h * . ~  

CnLd(C3/ l log  rll )(1 + 2 (j+ l)*/Koh2)2 I lK # ]1 ~#,r~.hr 

<~(1-q)L-~6  j 

where the last line follows if 3 ~ is sufficiently small. 
Similarly, we have 

(1) ~<(1 L - 1 3  j J -  II16. ,-~r*,h*,~ -~/) 

apply Proposition 5. We follow this with Proposition 3, 

(152) 

(153) 

To complete the proof of (149) and the theorem, we will establish 

(1) .< -1 ~ (154) ]]IllG*,q-lF*,h*,uj".o. CrlL (~ 

Recall that I= Io + Ip >o is defined so that 

I(X) l ( X w 3 x r  l ( X w g x 6 5  Q 

I p > o ( X  , x)  l ( X o  ~x E ~)----  (Kp~>o-Ep>o)(X, x) l(XW6x e 5 ~ 

Io(X ) l (Xe  5f) = [(Ko ~ - K~.< 2,o)(X) + W(X)] I(X~ 5P) 

We estimate separately I1~ ,  Ip>ol~ ,  and Io1~. By Proposition 5 and 
since (G*) -1 < (G#) -1, we have 

]]i1 ~] I (1) G*,rl iF. ,h. ,uj~ CrtL 1 # IlK 1 r .J (155) 

jrlp>o l~pl (~) <.C~L d/2-~ ][Ip>olr (156) G*.q IF*,h*,uJ 

IIIo 1~1[ (1) <<.c, L d l ] I o l ~ l l ~ r ~ h .  (157) G*,q- lF*,h * 

The rest of the argument for small sets relies on the fact that the 
relevant parts of K # l y have been extracted. A result of Brydges and Yau 
(ref. 1, Lemma4.3) is applicable to functionals whose low-order 



1306 Dimock and Hurd 

derivatives vanish at ~ = 0 and we can adapt their proof. Since Ip > o 1 s~ has 
no constant term in 0~b, we have 

IIIp>ol ~ l l ~  r~ h. uj <~ C, [[Ip>ol ~N~#,r#,h*,uS, dim>~a/2 

C u t  -a/2 [llp>ol~ll~#,r~ h#,.s, aim>~a/2 

~ C . L  -d/2 I[(Kp~>o) I~I[G~ r~.h~., (158) 

[The first C, actually has the form C.=I+CsLd/2(~Jh2)-I /2= 
1 + (9(1 - q ) ,  where C~ is a Sobolev constant.] The factor L -d/2 comes from 
changing h* to h # in dim ~> d/2 terms. Similarly, we have 

IIIo l~llG~,r#,h* <~ C. [llol jIl~,r~,h*,di~>~d+ l 

<<. CnL d-~ I[Iol~l[~,r~,~ 
<~CnL -d 1 IIK~ ls~ll G~,r~.h# (159) 

From the above we have 

I[I1~1] (1) -<C,L -~ IIg~l~llG#,r#,h~,~j (160) G*,rl-lF* h*,uJ ~, 

which combines with (155) to complete the proof. | 

7. A S Y M P T O T I C S  OF C O R R E L A T I O N  F U N C T I O N S  

We are now in a position to analyze the generating functionals Z(p) = 
( e  i~p'o)) and related physical quantities. These are defined on the torus 
Ao - A(N)  =- ( Z / L N )  d and our goal is to obtain bounds which are uniform 
in N and so hold for any infinite-volume limit. The simplest to analyze are 
the Green's functions G(x, y) and Gt(xl,..., Xp) given by (7) and (8). We 
estimate these by comparison with the free-field values (z = 0), which are 
G(x, y) = v(x, y) and Gt(Xl ..... Xp) = O. 

T h e o r e m  2. For  0 < e < 1, Uo > 0, and z sufficiently small there is a 
constant C [-independent of N and (9(z) as z --* 0] such that with G = o "N = 

N - 1  Zj=o 6as 

IG(x, y ) -  ( 1  --t- o ' )  - 1  t ) ( x ,  Y) l  

<~Clx.-y[  d+l+~ (161) 

IG'(xl,..., x,)l 
<~ Cp! uoPT(xl,..., xp) -a/2 + 1 diam(xl ..... x;) -d/2 +~, p > 2  

(162) 
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It is helpful to also compare the asymptotic behavior of G(x, y) to 
that of the infinite-volume inverse Laplacian, which can be done using the 
following lemma: 

Lemma 5. For a n y 0 < e < l  and a l l x ~ A ( N )  

fl lt)(x,O)=(Kd) -11X[-d+2+(9(Ixl-d+I+~), d>-3 (163) 

fl lV(x,O)=(2~z)-llog[LN/max(Ix[, 1)]+(9(1) ,  d = 2  (164) 

uniformly in N. The constant K~ equals ( d -  2) times the volume of the unit 
sphere in R d. 

ProoL See the end of this section. 

Remarks. (1) The bound (161) agrees with the result of Gawedzki 
and Kupiainen (6) for the lattice model, but the error term here is roughly 
one power better. The bound (162) is new and says that there is tree decay 
on the points x 1 ..... xp with a factor Ix i -  xjl-a/2+1 on each line and overall 
diameter decay. Possibly the exponent on the tree decay can be improved. 

(2) In d > 2 ,  as N--* oo we have that v(x, y) on A 0 converges to the 
cutoff inverse Laplacian on R d (times fl). By our estimates, G, G', and ~r are 
all bounded in N. If they have limits as N ~  c~ then (161) and (162) hold 
for these limits. For  the infinite-volume two-point function this means that 
for I x - Y l  large 

G(x, y ) = ( l - t - f f ) - l  flKd I Ix- yt-a+2+(9(Ix-y] -a+~+~) (165) 

(3) In d = 2 ,  v(x, y) converges to the cutoff infinite-volume inverse 
Laplacian, but only modulo a divergent constant. The thermodynamic 
limit of the generating functional Z(p) for neutral configurations ~ p = 0 
should exist. In this limit we will find for I x -  y[ large 

G(x ,y )=( l+a)  l f l (2rc)-l loglx-yl  1+(9(1) (166) 

as a distribution on neutral test functions. 

Proof of Theorem 2. From (43) we have log Z ( p ) =  1 -3(0, we) + 
g(p). Taking functional derivatives gives, for p = 2 (in which case G r =  G), 

G(x, y ) =  w(x, y )+4(x ,  y) (167) 

and for p > 2 

GT(x1 ,..., Xp)= O~p(Xl ,..., Xp) (168) 
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Also, 

N 

O~p(Xl,..., Xp)~-- E L-Jp(d/2-1)~Jp(L-Jx1 . . . . .  L JXp) ( 1 7 1 )  

j -o  

To prove the theorem, it suffices to prove the bound (162) for gp, p>~2, 
and the bound 

[w(x, y ) - ( l  + a ) - l  v(x, y)[ <~ C [ x -  y[ -d+ l +~ (172) 

We begin with the latter. 
Define CJ, by putting # = a = au in (170) and w, by replacing C j by 

CJ, in (169). For w, we may collapse the sum and obtain 

w,(x, y ) = f l  [Ao[ -1 ~] eiP(X-Y)p-2(epa+a) -~ (173) 
paA~\{O} 

(i.e., VN on Ao instead of Au). We compare this with v. 

I . e m m a  6. For s o m e a > 0  

Iw,(x, y ) -  (1 + a )  ~ v(x, y)[ ~< Ce -al~-yl (174) 

ProoL The left side has the form [F(x-y)[ ,  where 

F(x) = ]AI i ~ eipxj~(p) (175) 
p~A~\{O} 

with 

~(p)=f la(epa_l )p  2e-P,(ep4+a)-~(l+a) i (176) 

N 
w(x, y)= ~ L-J(a-2)CJ(L-Jx, L-Jy) (169) 

j = O  

where C j = C~j, and for any/~ 

C (x, y) 

flfliAj1-1 Z e •(x Y)p 2[(eP4+#) 1--(eL4p4--k#) 1] i f j < U  
= p ~ Aj*\{0} 

]AN[ 1 ~ eip(x-y)p-2(ep4 + #) 1 if j =  N 

P+A~v\{0}  

(170) 
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But y i s  also defined on R a and we may consider the inverse Fourier trans- 
form f(x).  Then we have 

F (x )=  ~ f ( x + n L  N) (177) 
n c Z  d 

since both sides are periodic and have Fourier coefficients y(p).  Now )~(p) 
is analytic in a small strip lira p] ~< a around the real axis and the contour 
can be deformed to obtain 

Therefore also 

lf(x)l <~Ce ajxl, x ~ R  d (178) 

I F ( x ) l  ~ C e  .ixl, x 6 A  (179) 

which gives the result. | 

The next result completes the proof of (172). 

L e m m a  7. For any e > 0 there is a constant C so that 

Iw(x, y ) - -w, (x ,  y)] <. C l x -  yt d+l+~ (180) 

Proof. We have 

N--1 
w(x, y ) -  w,(x, y) = ~ L -(d 2)J[CJ(L-Jx, L - @ ) -  CJ,(L-J)c, L -@)] 

j= O 

(181) 

As in Lemma 6, 

[CJu(x, y)j <~ Ce alx-< (182) 

uniformly in [#I < 1/2, and a Cauchy bound gives, for I#J, [#'l < i/4, 

IQ(x, y) - %(x ,  y)t ~< c lu - S I  e - ~  ~x-,,d (183) 

Now take/~ = as, # ' =  ~r: 

[CJ(L-Jx, L Jy) -  CJ,(L ix, L-@)I L -r 2)j 

~< C ]o'j-- o- I L -~d 2)j ]x/L j _  y/L;[ d+l+e 

~ C  [o'j--o-] L ( 1 - e ) j  Ix-yl--d+ l+g  (184) 
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The result now follows: since ]6oil ~< (9(L-Q and hence ]a j -  o] ~< (9(L-J), 
the sum of (184) over j is bounded using 

N--1  

la: -~l  L(1-~)J <~ C (185) 
j - O  

for a constant C. | 

I . e m m a  8. F o r p > ~ l ,  

lgp(x)] ~< Cp! uoPT(x) d/2+1 diam(x) a/2 +~ (186) 

Proof. From (31 we have for j < N  that g~(L i x ) = 0  if j < J -  
min{j: 6 L-jx E SP } and 

~(L '~)= Z Kg,/(X, O; L-'x) (187) 
X:X~)r L j x G ~  

ifj>~J. For j~>J ,  G # = G  #'~, and F # = F  #J, we have 

IL-J~(d/2 1)8~(L-Jx)l 

~<sup (F#(X, L - i x ) )  -1 ILK0#/ G.,,-~ L ~(~/~-~) 
X 

~<sup (F#(X, L- ix ) )  -x UoPP! I IK# 'J l lG# r #  h# =, (188) 
X 

where the sup is over X such that X U h L - ~ S e .  But j>/J  implies 
diam(L-Jx)  ~< 2 d and so, by Lemma 1, for such X, 

F#(X,  L ix) 1 ~< CT(x)-d/2+~ L-J(d/2 1) (189) 

Also we have 
[[K#,jHG#,r#,h,,~I<~fj<~ L j(1 -- e)(~O 

and so, for any J<~j<N, 

IL jp(d/2 1)#j(L Jx)l ~< Cp! UoPL-J(d/2-e)T(x)-d/2+ 1 (190) 

The last term j = N  in (171) is defined differently, but still satisfies 
the same bound, as we now demonstrate. ~'~N is defined on a single block 
A N = A and we can regard it as a local analytic functional (independent of 
~) given by 

~'~N(z~, p ) =  log[1 +K#'N(A, p)]  - [p =03  

= ~ (--1)~r-~[K~'U(z],p)]~--[p=O] (191) 
r = l  
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Let o ~N be the same without the [p = 0 ]  subtraction; this has the same 
p-derivatives. Then one can establish 

IICNIIr~ uN~ < ~, r -1 I[(K#,N)rllr#~,~,. 
r = l  

< ~ r  1 K # N r  
I[ l [ / ' # , u  -A/ 

r = l  

~<2L N(1 - ~)C~0 (192) 

Now we have, as in (188)-(190), 

[L -Np(d/2 ')o~N(L N X ) [  <~p! uoPF#(A, L NX)-I ItguI]v~,x 

<~ Cp! uoPL-N(d/2-e)T(x) -a/2+ ] (193) 

Putting (190) and (193) together, we have 
N 

[d~p(x)l ~ Z L jp(d/2-1) ]g~(L-Jx)l 
s = s  

Cp! uoPL - J(d/2 -e)T(x ) -a/2 + 1 (194) 

But L-S~<2U[diam(x)] -~ and this completes the proof of Lemma 8 and 
Theorem 2. | 

C o r o l l a r y  1. In d~>3, g(p) and log Z(p) are analytic and 
uniformly bounded for JlplJ <~B<uo and all N. In d = 2 ,  g(p) is analytic 
and uniformly bounded for I]plt ~< B <  Uo. 

Romark. Uo is arbitrary, but a larger Uo forces a larger h0 and hence 
a smaller Izl. 

Proof. By Lemma8,  gp(pP)<~Cp! (Hp]l/Uo) p for p~>l and go=O, 
hence the bound on g(p). Also, (p, wp) is always uniformly approximated 
by (p, vp). In d~> 3 (but not in d =  2), Ilvll ~ < ~ ,  hence (p, vp) is uniformly 
bounded. | 

Now we turn to the charge-charge correlation functions defined 
by (6). 

T h e o r e m  3. For any charge q, and Izl sufficiently small (depending 
on q), there is a constant C >  1, so that for [x -yJ  large and d~>3, 

C lflq2[(l+~)Kd] - l l x - y l  a+2 

<<. g'(x, y) 

~C~q2[(l_.k~)Ka] l l x _ y  j a+2 (195) 
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For d =  2 we have 

C 1 1.3( 7 _ Yl /5'q2/2~z(1 + or) ~ g(x, y) ~ C Ix - Yl --flq2/2rc(1 + o-) 

and 

Dimock and Hurd 

(196) 

1 1 

gt(x' Y)= fo d/ds e a(s' ds= A' fo ea(" ds (198) 

By Corollary 1, in d~> 3, A(s) is bounded and so it suffices to prove 

(1 + e ) - i  flq2[( 1 + a )  gd] -1 IX-- Yl-a+2 

~<A' 

~ < ( l + e ) f l q 2 [ ( l + a ) K a ]  1 i x _ y [  d+2 (199) 

for A' = log Z(px + py) - log Z(p~,) - log Z(py). There are two contribu- 
tions to this quantity from the two terms in log Z(p) = -�89 wp) + g(p). 
The first is just (Px, Wpy) = -q2w(x,  y), and the bound 

(1+~)  l f i [ ( l + a )  Ka] ' lx-yl d+2 

<<. w(x, y) 

~< (1 + e) fl[(1 + a) ga] --1 I X -  Yl a+2 (200) 

follows from Lemmas 5-7. 
The second term is g(p~, + p y ) -  g ( P x ) -  g(Py). Expanding each term 

by g ( P ) = 2 ~ = ,  (l/p!) gp(pP) gives 

g(px+Py)--g(px)--g(py)= ~ (1/a!b!)ga+b(p~xp~) (201) 
a,b=l 

and then 

C -1 IAol-flq2/8~(l+a)~Z(px)~CI401 -flq2/8~(l+a) (197) 

Thus Z(px) ~ 0  as ]Aol ~ oe and gt(x, y) satisfies (196) as well. 

Remark. These results are consistent with similar bounds proved for 
lattice dipole gases by Fr6hlich and Spencer. (4) 

ProoL We assume [q] ~ 1. Let Px = qfx and py = --q(~y, SO gt(x, y) = 
Z(p x + py) -- Z(px) Z(py). Also define 

A(s) = s log Z(p x + py) + (1 - s)[log Z(px) + log Z(py)] 
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By Lemma 8, 

, b U0-(~ + b) a+1+~ I a+b(PxPs)l <- C(a + b)! I x -  Yl (202) 

Assuming u 0 > 2, 

(a + b)!/a! b! Uo~~ = ~ (2/Uo) p = (~(1) (203) 
a,b p 

and so we conclude that in d~> 3 

I S ( p . ~ + p y ) - 8 ( p x ) - g ( p y ) l ~ C I x - y l  -d+l+~ (204) 

In d = 2 ,  A(s) and A'(s) are not uniformly bounded, since ~ p x =  
-SPy r 0, and so the argument above fails. However, working directly, one 
finds that 

Z(px) = ( d  qc'(xl) = exp - q2/2 ~ CJ(O, O) + g(p~) (205) 
j = O  

where S(px) is bounded and, as proved in ref. 2, Lemma A.3, 

t C J(0, 0) - fl log L/2~(1 + a)f <~ 6~(L ~- N) (206) 

Thus, Z(p~)~ IAol-~qa/8~(l +~, which goes to zero as [Aol ~ oo. 
For  

g(x, y) = Z(px + py) = exp[ - q2(w(0, 0) - w(x, y) ) + ~(Px + Py)] 

we note that g(Px + Pw) is bounded by Corollary l, and tw(0, 0 ) -  w(x, Y)I 
has a log I x -  yf bound by Lemmas 5-7. Thus we conclude that in d =  2 

g(x, y) <~ C exp[ _flq2 log [x - y[/2zc(1 + a) ]  = C Ix - y] --flq2/2n(1 + a) 

(207) 

! The corresponding lower bound follows in the same way. 

Finally, there remains the following task. 

Proof of Lemmo 5. We sketch the proof of the harder case d =  2, 
with the momentum cutoff function e p2 rather than e -p4. First we 
compare 

N 

v(x, o)= F~ C~(L-ix, 0) (208) 
j - O  
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to the infinite-volume function 

where 

v. (x ,  O) = fl(2rc)-2 f dp e'?'~p 2(e p2 _ e LZ~p2) 

N--1 
= ~ Co,~(L-Jx, O) 

j=O 

C0, oo ~- ~(27[) 2 f dp  eip~p-2(e -p2 - e L2p2) 

As in the proof of Lemma 6, for j < N, 

CJo(L-Jx, 0 ) =  ~ Co,~(L Jx+nL N J, O) 
n ~ Z  d 

Since Co,~(x, O) ~< (9(1) e -aLxl for some a = (9(1), 

and 

ICo(L-Jx, 0 ) -  Co,~(L-Jx, 0)l ~< ~ (9(1) e -~ IL Ju+.LN-Jl 
n ~ Z  d 
n # O  

~< (9(1) e -'cN-#2 

N--I  N--1 
Z ]Cg(L-Jx, O)-Co, oo( L Jx, O)[...<(9(1) Z e--"cN-'/2 

j = 0  j = 0  

< 0 ( 1 )  

One can also show ICg(L-Nx, 0)l ~< (9(1). 
Now, 

(209) 

(210) 

(211) 

(212) 

�9 -2 ds (-d/ds)  e -~;2 

Z 2N 
= (4~) -1 ~ ds s - l e  - x 2 / 4 s  (213) 

"1 

For 1 ~< x 2 ~< L 2N, write 

~ L  2N x 2 

fl-lvm(x, O)=(4%)-lax 2 dss - l  +(4rt) l f l  dss- le  -x2/4s 

+ (4~) - '  [ L2~ ds s- l(e  -x2/4s - -  1 ) (214) 
Jx 2 
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The first term gives (2re) l log(LN/[xl), while the second and third terms 
can be shown to be C(1). For x2<  1 one writes 

L 2 N  L2N 

[3 'voo(x, O) = (4~) 1 [ ds S 1 -t- (4re) ' [ ds S l(e-X2/4s-- 1) (215) 

and shows that the second term is (_9(1), to complete the proof. | 

A P P E N D I X  

Let G~(X) be given by (47). 

L e m m a  9. Let {Xi} be a set of polymers, and X =  UiX~. Suppose 
the maximum overlap r = supx~A # {i: X~+x} is finite. Then 

c~(x)/> ~ c~,(x,) (AI) 
i 

Proof. For any polymer X, let ) ~ X  denote any extension of X 
obtained by replacing some or all f a c e s f o f  8X b y f u f m ,  where f ro  is the 
open rectangle of width 1/2 satisfying f l / 2 n X = f  We note that 
two polymers X, Y overlap if and only if .g, ~" overlap. Therefore, 
Z=SUpx~A#{i:Xi+X}. Also, by the Sobolev inequality, J]c~r 
c~ ar ~i,,2. 

To prove (A1), we define X+ by extending faces f ~  8Xi\SX. Since we 
only extend interior faces, we still have X =  U+ xi  and hence 

~ (l'~r + l/c [l~r ~ ~ ( l'~()ll~2,,, + l/c Z 1[~r 
i " f ~  3 X  i ~a ~ X  

<. ~( ~ ~s~+ 1/c II~11~) 
where for the first inequality we require C~d/c <~ 1. | 

Now we consider the one-parameter family of large-field regulators 
g( t ,X,r162 0~<t~<l, defined by (144), and the Gaussian 
measure d#c on A with covariance C given by (21). The following result 
extends ref. 1, Proposition 9.1 to our situation. 

Proposition 6. There exists Xma~ > 0 such that for all x <~ tCma x and 
O<~u<<.t<.l, 

#u- , )c  * g(u) <<. g(t) (A2) 

ProoL For simplicity, we treat the large-field regulators as though 
they depend only on 8~b, ~32r 

g(u, X, O) = e ~" IXlE(X, qb) F,(u, X, ()) r2(u, X, O) (h3) 

822/66/5-6-9 
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where 5 = log 7, 

2 ) 

Dimock and Hurd 

(A4) 

(A5) 

Thus 

exp[afl2(Sl~b, (1 -o~j~CS1) 1 CSI(~ ) ] 

exp[(9(1 ) x2(t - u) II,~,~ll 2x] 

[#( , -  u)C * F~(u)]  1/3 ~ F~(u, X, ()) exp [(9(1) K(t - u)IXI 3 

x exp[(9(1) K2(t - u) [I c3~b I] 2jc] 

and 

For  any Gaussian function G(q~)=e B<so'o>/2, where S : ~ ( A ) ~  
~ , ( A )  is such that  CS is a trace-class self-adjoint operator  on ~ ( A ) ,  we 
have 

[#~c * G](~b)= G(~b) i d#~c (~) exp fl[(S~, ~)/2 + (S(~, 

= G(~b) exp[afl2(S~b, (1 - aflCS) 1 CS())] 

x det ~-21/2(1 - ~flC 1/2SC 1/2) 

To get #c * F~, we take CS1 given by 

(CS 1 (3)(x)= fox (aC)(x, y)(a~)(y) dy (A9) 

Provided [[ CS1 [[ g~ ~< (9(1) and trc2 C m S  1C ~/2 ~< (9(1) IX[, and ~c is chosen 
small, we find that  for fl = 3~Cll(U)/C, ~ = t -  u, 

det L1/2(1 - eriC 1/2S1 C 1/2) << exp [ (afl/2 )(tr C ~/2S~ C ~/2)(1 - c~fl [I CSt [[ ) -  1 ] 

-.< exp[(9(1) ~ ( t - u ) [ X I ]  

F2(X, ())=exP (�89 fx [32q)]2 ) (A6) 

l , (u )=L i + ( 1 - L  i)u (A7) 

By Holder 's inequality, 

#c * g(u) <<. e a" 'x'(p C * E3) 1/3 (#c * g~)  1/3 (#c * F~) U3 (A8) 
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A similar argument shows 

[#(t-u)c * F3(u)]U3~ F2(u, X', q~)exp[(9(1)x(t- u)[XI ] 

• exp[(9(1) x 2 ( t -  u) ll8~bq[ 2] 

provided CS2 defined by 

(CS2~)(x) = fx (~2C)(x' Y)(Oz~b)(Y) dy (A10) 

has 1[ CS2 II ~s ~< (9(1) and trc2 C 1/2S 2 C 1/2 ~ (9(1) [X], and x is chosen small 
enough. 

The dangerous factor E is treated using integration by parts: 

[#( , -  u)c * E3(u)] i/3 

= E(O) { f  d#(,-u,c (~) 

<~ E(u, X, (J) exp[(9(1) x(t - u) [Xl ] 

• exp [(9( 1 ) ~2(t - u)( II a~ II 2 + II aq~ II ~-) ] 

The bound above follows, provided 

(CS30) (x )=f  C(x, y) 80(Y) dy (Al l )  
x 

and 

(CS4~)(x) = fx C(x, y) 02~b(y) dy (AI2) 

are such that ]ICSiII ~<C(1) and tr cUZsic~/2<~C(1)IXI. We put all this 
together using l i ( u  ) = li(t) - (1 -- L-i)(t  - u), 

[#(, u)c * g(u)] ~< g(t)(exp{ [--c5 + (P(1)tc]( t-  u) 12"1 } 

x exp{ [ - �89 - t -2) + C(1) ~c2] ( t -  u) Ila2~li ~} 

• exp{ [ -  �89 - L - l )  + (9(1) ~c2](t - u) ILa~ql 2x}) 

<~g(t) 

provided x is small. Finally, we note that the required bounds on CS~ 
follow from bounds for U C  similar to (182). | 
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